Emissões de CO2 viram pedra quando gás é enterrado

Emissões de CO2 viram pedra quando gás é enterrado

Gás carbônico petrificado

Cientistas acreditam ter encontrado uma maneira inteligente de reduzir as emissões de dióxido de carbono - transformá-lo em pedra. Ou, pelo menos, solidificá-lo nas reentrâncias de rochas porosas.
Em um experimento feito em uma usina geotérmica na Islândia, o gás carbônico emitido pela usina, juntamente com água, foi injetado no subsolo, no interior de rochas vulcânicas.
As primeiras análises sugerem que o CO2 reagiu com os minerais nas camadas profundas, convertendo o gás em um sólido estável, com a consistência de giz, que permeia as fissuras da rocha matriz, conhecida como basalto.
Outro resultado animador, como descreveu o grupo em artigo na revista Science, foi a velocidade do processo: questão de meses.
"De 220 toneladas de gás carbônico injetado, 95% foi convertido em pedra calcária em menos de dois anos," afirma o coordenador da pesquisa, Juerg Matter, da Universidade de Southampton, no Reino Unido. "Foi uma grande surpresa para todos os cientistas envolvidos no projeto."
Sequestro e conservação de carbono
As técnicas conhecidas como sequestro e conservação de carbono podem ser uma solução para o aumento da concentração de dióxido de carbono na atmosfera.
Experimentos anteriores injetaram gás carbônico puro em arenito e em aquíferos profundos de água salgada. As locações escolhidas - que incluíram poços desativados de petróleo e gás - se valiam de camadas impermeáveis de rochas resistentes para conter o dióxido de carbono, já que se teme que ele escape de volta para a atmosfera.
O Projeto Carbfix na Islândia, por outro lado, busca solidificar o carbono indesejado.
Trabalhando com a usina geotérmica de Hellisheidi, no entorno de Reykjavik, a iniciativa combinou gás carbônico e água para produzir um líquido levemente ácido, injetado centenas de metros até as rochas basálticas que compõem grande parte dessa ilha do Norte do Atlântico.

A água de baixo pH (3,2) serviu para dissolver os íons de cálcio e magnésio nas camadas de basalto, que reagiram com o dióxido de carbono para gerar os carbonatos de cálcio e magnésio. Tubos inseridos no local dos testes coletaram pedras com os característicos carbonatos brancos ocupando os poros das rochas.CO2 vira pedra
Os pesquisadores também "marcaram" o CO2 com carbono-14, uma forma radioativa do elemento. Desta maneira puderam verificar se parte do CO2 injetado estava voltando à superfície ou escoando por algum curso d'água. Nenhum vazamento foi detectado.
"Isso significa que podemos bombear grandes quantidades de CO2 e armazená-lo de maneira bem segura e em um curto período de tempo", disse o coautor do estudo Martin Stute, da Universidade de Columbia, nos EUA. "No futuro, podemos imaginar o uso disso em usinas de energia em locais com muito basalto - e há muitos locais assim."
Desafios e dificuldades
Contudo, outros especialistas, como Christopher Rochelle, do Serviço Geológico Britânico, alertam que nem todos os basaltos são iguais, e que será necessário avaliar se o comportamento se repete em outras localidades.
Há também o problema do custo. Capturar CO2 em usinas e outros complexos industriais é caro, e as empresas alegam serem necessário "incentivos", o que significa obter recursos públicos para bancar o processo.
Outro ponto a ser considerado é a infraestrutura necessária para bombear gás até o local em questão. No caso do Projeto Carbfix, há necessidade de um volume significativo de água. Apenas 5% da massa bombeada terra abaixo é CO2.

FONTE 

Bibliografia:

Rapid carbon mineralization for permanent disposal of anthropogenic carbon dioxide emissions
Juerg M. Matter, Martin Stute, Sandra Ó. Snaebjörnsdottir, Eric H. Oelkers, Sigurdur R. Gislason, Edda S. Aradottir, Bergur Sigfusson, Ingvi Gunnarsson, Holmfridur Sigurdardottir, Einar Gunnlaugsson, Gudni Axelsson, Helgi A. Alfredsson, Domenik Wolff-Boenisch, Kiflom Mesfin, Diana Fernandez de la Reguera Taya, Jennifer Hall, Knud Dideriksen, Wallace S. Broecker
Science
Vol.: 352, Issue 6291, pp. 1312-1314
DOI: 10.1126/science.aad8132